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Photoinduced electron transfer (PET)1 has in our hands turned
out to be a viable tool for the synthesis of mono- and polycyclic
terpenoid skeletons2 which are assembled via regioselective
oxidation of terpenoid polyalkenes at the omega alkene sites. Such
oxidations, generating the parent radical cations, give rise to (a)
trapping of the radical cations by a nucleophile, such as water,
(b) radical-type cyclization(s), and (c) termination of such
processes either by reduction/protonation at the resulting tertiary
radical center of the cyclization products or by trapping of this
center by a hydrogen atom (Scheme 1).3 Depending on the
electron-withdrawing properties of the substituent(s) R1/2 of the
polyalkene chain, 6-endo(f 2) vs 5-exo-trig (f 3) ring closures
terminate the cyclization of1.

Such PET-triggered cascade cyclizations were found to mimic
the parent nonoxidative enzymatic processes4 which in turn have
originally been proposed to proceed via cationic intermediates,
generated upon enzymatic protonation and anti-Markovnikov
addition of water. A representative example of such transforma-
tions is that of squalene to tetrahymanol.4b However, the latter
proposal has so far not been validated in vitro. The present
principle, based on the intermediacy of radical cations, which are
generated photochemically from readily accessible terpenoid
polyalkenes, provides nature-like cascade cyclizations, including
the requisite anti-Markovnikov addition of a nucleophile, such
as methanol or water.

(E,E,E)-Geranylgeranylmethyl dioxinones4 and 75 were ir-
radiated (Rayonet reactor,λmax ) 300 nm) in the presence of 1,4-
dicyanotetramethylbenzene (DCTMB) and biphenyl (BP) as
electron-acceptor couple in MeCN/H2O 10:1 at-25°C,6 adopting
conditions7 which have already been successfully employed in
earlier work concerning the biomimetic PET cyclization of shorter
terpenoid polyalkene chains.8,9 This electron-acceptor combination
can be used in homogeneous solution rather than in micellar media
which we employed in our earlier efforts and which posed
difficulties with respect to the handling and workup.2a Further-
more, catalytic amounts of DCTMB and BP are sufficient to drive
the reactions to completion since the electron acceptors are
chemically stable.

The spirocyclic dioxinone moieties of4 and7 were chosen as
asymmetric inducers, adopting an enantiodivergent induction
principle applied earlier in [2+ 2] photocycloadditions10 and more
recently in PET-induced cyclizations of shorter polyalkenes.9 This
method, although using a single chiral auxiliary such as (-)-
menthone, generates products of complementary chiralities,
provided that the reactions involving the dioxinone moieties are
sufficiently face-selective. The major photoproducts of4 were
identified as a diastereomeric mixture of5 and6 in a 7:1 ratio
(Scheme 2).11-13 Analogously, 7 (diastereomer of4) when
subjected to the above PET conditions, afforded8 and9 in a 2:1
ratio. The absolute configurations of all compounds have been
secured via stereochemical correlation and NOE/NOESY spec-
troscopy. Both cyclizations are highly regio- and stereoselective
in that anti-Markovnikov and equatorial addition of a nucleophile
(water) are observed, furnishing tetracyclic products (5/6 and8/9)
with all-trans ring fusions.
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Notably, the fourth ring closure occurs purely via a 5-exomode,
which is in agreement with earlier results concerning cyclizations
of shorter polyalkene chains. The termination of such cascades
depends on the electron-withdrawing capacity of the substituent(s)
R1/2 (cf. formation of3, Scheme 1).2b The dioxinone moiety, in
the present case, directs the terminal ring closure exclusively
toward a 5-exo-trig mode avoiding the 6-endoalternative.11

The degree of asymmetric induction associated with these
cyclization cascades is quite remarkable. The chiral moiety is
remote from the initiation site (radical cation), which suggests a
diastereoselective folding of the polyalkene chain prior to or
shortly after the initial PET oxidation step, i.e.,4 f 4+•. The
all-trans pre-chair folding pattern, as represented by4+•-R, should
consequently be responsible for the formation of the major
photoproduct5, and 4+•-â, which exhibits considerable steric
interactions at the bottom face (shown in Scheme 2) should lead
to the minor component6.14 Analogous considerations are
applicable to explain the predominant formation of8 vs 9 from
7 via 7+•-R vs 7+•-â, respectively. The finding that the major
reaction paths proceed viaR-folding of the polyalkene chain is
in accord with earlier findings concerning the PET-triggered
cyclizations of shorter terpenoid chains.9

Removal of the chiral auxiliary (-)-menthone, which can be
recovered, from the major photoproducts5 and8 with NaOMe
in MeOH renders in excellent yields (91 and 95%, respectively,
of isolated materials) the steroidal products10andent-10,15 which
demonstrates the viability of the induction principle (Scheme 2).
These tetracyclic products exhibit uniformly all-trans ring fusions
and a substituent pattern at C(17) which is appropriate for further
functionalizations at this center, e.g., for chain elongations. The
overall number of steps required for the assembly of these

steroidal skeletons in>99% enantiomeric excess16 is merely four,
and the preparations start from readily available materials.

In conclusion it should be noted that in the cyclization cascades
4 f 5/6 and7 f 8/9 eight stereogenic centers are created in a
single operational step and only 2 out of 256 possible isomers
are formed in 10-12% yield (isolated products)sa (photo)-
synthetic achievement which can hardly be surpassed by stepwise
techniques. In addition these transformations represent aremark-
ably remote asymmetric induction,17 substantiating further the
theory of “minimal enzymatic assistance”4 in biosynthesis and
ultimately giving access to the hitherto shortest biomimetic
synthesis of steroidal skeletons in enantiomeric pure form.18,19
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Scheme 2a

a Reagents and conditions: (PET) biphenyl, 1,4-dicyanotetramethylbenzene,hν (300 nm), MeCN/H2O 10:1,-25 °C, 10% (5 and6), 12% (8 and9);
(a) NaOMe, MeOH, 25°C, 91% (10), 95% (ent-10).

Communications to the Editor J. Am. Chem. Soc., Vol. 121, No. 20, 19994895


